Foxo1, a novel regulator of osteoblast differentiation and skeletogenesis.

نویسندگان

  • Cristina C Teixeira
  • Yuexun Liu
  • Lwin M Thant
  • Jason Pang
  • Glyn Palmer
  • Mani Alikhani
چکیده

Skeletogenesis depends on the activity of bone-forming cells derived from mesenchymal cells. The pathways that control mesenchymal cell differentiation are not well understood. We propose that Foxo1 is an early molecular regulator during mesenchymal cell differentiation into osteoblasts. In mouse embryos, Foxo1 expression is higher in skeletal tissues, while Foxo1 silencing has a drastic impact on skeletogenesis and craniofacial development, specially affecting pre-maxilla, nasal bone, mandible, tibia, and clavicle. Similarly, Foxo1 activity and expression increase in mouse mesenchymal cells under the influence of osteogenic stimulants. In addition, silencing Foxo1 blocks the expression of osteogenic markers such as Runx2, alkaline phosphatase, and osteocalcin and results in decreased culture calcification even in the presence of strong osteogenic stimulants. Conversely, the expression of these markers increases significantly in response to Foxo1 overexpression. One mechanism through which Foxo1 affects mesenchymal cell differentiation into osteoblasts is through regulation of a key osteogenic transcription factor, Runx2. Indeed, our results show that Foxo1 directly interacts with the promoter of Runx2 and regulates its expression. Using a tibia organ culture model, we confirmed that silencing Foxo1 decreases the expression of Runx2 and impairs bone formation. Furthermore, our data reveals that Runx2 and Foxo1 interact with each other and cooperate in the transcriptional regulation of osteoblast markers. In conclusion, our in vitro, ex vivo, and in vivo results strongly support the notion that Foxo1 is an early molecular regulator in the differentiation of mesenchymal cells into osteoblast.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SATB2 Is a Multifunctional Determinant of Craniofacial Patterning and Osteoblast Differentiation

Vertebrate skeletogenesis involves two processes, skeletal patterning and osteoblast differentiation. Here, we show that Satb2, encoding a nuclear matrix protein, is expressed in branchial arches and in cells of the osteoblast lineage. Satb2-/- mice exhibit both craniofacial abnormalities that resemble those observed in humans carrying a translocation in SATB2 and defects in osteoblast differen...

متن کامل

FOXO1 modulates osteoblast differentiation.

Forkhead box O1 (FOXO1) is upregulated during bone formation and in response to stimulation by bone morphogenetic proteins. Studies presented here examined the functional role of FOXO1 in a well defined culture system in which pre-osteoblastic cells undergo terminal differentiation in vitro. Mineralizing cultures of MC3T3-E1 cells were examined with or without FOXO1 knockdown by RNAi. Normal ce...

متن کامل

MiR-132-3p Regulates the Osteogenic Differentiation of Thoracic Ligamentum Flavum Cells by Inhibiting Multiple Osteogenesis-Related Genes

Ossification of the ligamentum flavum (OLF) is a disorder of heterotopic ossification of spinal ligaments and is the main cause of thoracic spinal canal stenosis. Previous studies suggested that miR-132-3p negatively regulates osteoblast differentiation. However, whether miR-132-3p is involved in the process of OLF has not been investigated. In this study, we investigated the effect of miR-132-...

متن کامل

FoxO1: a novel insight into its molecular mechanisms in the regulation of skeletal muscle differentiation and fiber type specification

FoxO1, a member of the forkhead transcription factor forkhead box protein O (FoxO) family, is predominantly expressed in most muscle types. FoxO1 is a key regulator of muscle growth, metabolism, cell proliferation and differentiation. In the past two decades, many researches have indicated that FoxO1 is a negative regulator of skeletal muscle differentiation while contrasting opinions consider ...

متن کامل

FOXO1 orchestrates the bone-suppressing function of gut-derived serotonin.

Serotonin is a critical regulator of bone mass, fulfilling different functions depending on its site of synthesis. Brain-derived serotonin promotes osteoblast proliferation, whereas duodenal-derived serotonin suppresses it. To understand the molecular mechanisms of duodenal-derived serotonin action on osteoblasts, we explored its transcriptional mediation in mice. We found that the transcriptio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 285 40  شماره 

صفحات  -

تاریخ انتشار 2010